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Controlled charged capillary jet breakup of conducting liquids with different viscosities
and applied voltages are experimentally analysed in this work. Careful measurements
of droplets size and charge transported by the main and satellite droplets have
been carried out. The experimental results are compared with those obtained by
an augmented one-dimensional Lee model (López-Herrera et al. 1999). Theory and
experiments show a remarkable agreement, which validates the rather inexpensive
one-dimensional models as suitable predicting tools for scientific and engineering
applications from electrospraying to charged jet printing over other sophisticated,
more expensive three-dimensional models. Our results show that satellite droplets
tend to undergo Coulombic rupture even in the case of very moderate electrification
levels when the Ohnesorge number is sufficiently large.

1. Introduction
As technological applications become increasingly demanding on aerosol quality

and control on the droplet size and its homogeneity, the aerosol generation process
itself is becoming one of the most widely and deeply analysed issues of fluid dynamics
with free surfaces. In particular, the analysis is being increasingly focused on the
capillary jet or liquid ligament dynamics as the inherent precursor of the droplet
stream. Thus, emerging technologies to produce extremely controllable and high-
quality liquid micro-jets, either by mechanical or electrical means, are now the
subject of great interest in technological applications demanding very small and
homogeneous droplet size. In general, the characteristics of an ideal, high-quality
aerosol for a demanding application are naturally met by the aerosol resulting from
the axisymmetric capillary breakup (Rayleigh breakup) of a number of small and
steady liquid ligaments into droplets. In fact, when the conditions for this breakup
regime are met, the spray quality is optimal since the droplet size is mainly uniform
and it can be precisely controlled (droplet size is proportional to the jet diameter
in this regime). For example, in so-called cone-jet electrospraying (Zeleny 1917;
Cloupeau & Prunet-Foch 1989), the extremely thin steady liquid ligament formed
and ejected by electrohydrodynamic forces breaks up into rather homogeneous-size
charged micro- or nano-droplets, yielding a particularly high-quality aerosol (see for
example Rosell-Llompart & Fernandez de la Mora 1994; De Juan & Fernandez de
la Mora 1997a , b; Gamero-Castaño & Hruby 2002) when the liquid flow rate (or the
liquid electrification level) is held below a certain threshold value.
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In general, when electrostatic forces are used to assist the liquid jet formation or
breakup, the control of the resulting spray involves the quantification of the size and
charge of the droplets generated.

Most of the vast available literature on capillary jet breakup deals with non-
charged jets. Available linear analyses (Rayleigh 1878; Weber 1931; Chandrasekhar
1961; Tomotika 1935 etc.) allow to be estimated the most probable resulting droplet
size but they do not give any information on either the satellite droplets or the effect of
the initial amplitude of the perturbation on the breakup process. Using perturbation
schemes, more recently some authors have included nonlinear effects (Yuen 1968
or Chaudhary & Redekopp 1980 among others), explaining the appearance of the
satellite droplets from the growing of higher harmonics of the initial perturbation.
So far, analytical approaches have been unable to provide the interface position at
the last stages of the breakup and, in consequence, cannot predict the volumes of the
main and satellite droplets with enough accuracy.

Even with the axisymmetric simplification, the resolution of the Navier–Stokes
equations in the presence of charges at a free boundary is not trivial. Using the
jet slenderness, several one-dimensional models have been developed with notable
success. Melcher & Warren (1971) employ this simplification for the first time in a
model describing a jet in an imposed electric field, in the radial and axial directions.
Other one-dimensional models such as the inviscid Lee model (Lee 1974), the Cosserat
model (Green 1976) or the viscous Lee model (Eggers & Dupont 1994; Garcı́a &
Castellanos 1994) have been derived to deal with the time-evolving nonlinear jet
dynamics towards breakup. For example, Ambravaneswaran, Phillips & Basaran
(2000) analyse with great success the dripping faucet problem using a hydrodynamic
one-dimensional model. A review and detailed derivation of the models available
in the literature can be found in Garcı́a & Castellanos (1994). Furthermore, direct
simulations of the jet breakup using three-dimensional axisymmetric Navier–Stokes
equations have been recently accomplished. For example, Keunings (1986) solves
the breakup of non-Newtonian fluids, Ashgriz & Mashayek (1995) report numerical
result on the breakup of a viscous jet, whereas Mansour & Ludgren (1990) simulate
the breakup of an inviscid jet using a velocity potential formulation.

Most early experiments on the breakup of uncharged jets seek to compare and
validate the results of the linear analysis, and to provide the resulting volumes of main
and satellite droplets (Donnelly & Glaberson 1966; Goedde & Yuen 1970). For their
application to ink jet printers, other experiments analyse satellite droplet formation
and propose methods to eliminate them (e.g. by jet excitation with combinations of
harmonics, Chaudhary & Maxworthy (1980) or Brenn & Lackermeier (1997) among
others, or by the use of novel actuators (Barbet 1997)).

Most early published literature on electrically charged jets deals with linear analysis,
considering the fluid as a perfect conductor. This provides dramatic simplifications
in the calculation of electrical stresses on the jet’s surface (the charge is distributed
on the surface only, and the electric field is normal to it). Basset (1894) studies
this configuration by a linear analysis and shows that, for an axisymmetric breakup,
the electric field stabilizes the long-wavelength perturbations and destabilizes the
short ones. Melcher (1963) shows that, for a moderate electrification (moderate
electric stresses compared to surface tension forces), the faster growing mode
is always the axisymmetric one. Saville (1971b) performs a linear analysis of a
conducting liquid, adding the effect of liquid viscosity. Some other linear analysis
show that a tangential electric stress can attenuate the growth of perturbations,
promoting very long jets such as those obtained in an electrospray using moderate
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viscosity liquids in the non-whipping jet regime (Saville 1970; 1971a; Mestel 1994,
1999).

Nonlinear studies are less common in the literature. Setiawan & Heister (1997)
analyse the three-dimensional, axisymmetric breakup of an inviscid conducting jet
under high electrification levels, and find that it is possible to form Taylor-type cusps
on the jet surface. López-Herrera, Gañán-Calvo & Perez-Saborid (1999) tackle the
problem of a viscous jet, using the one-dimensional Lee model. They focus their
attention on the resulting charge and volume distribution between the main and
satellite droplets.

Experimental work on electrified jets starts with Magarvey & Outhouse (1962). The
breakup is not forced in that work, and the control parameters are the flow rate and
the applied voltage. They experimentally report the transition from axisymmetric to
whipping breakup as the voltage is increased. Huebner (1969) shows how the main
droplet size decreases as the voltage increases.

Other drop formation phenomena under the influence of electric fields such as liquid
dripping from capillary tubes or the breakup of liquids bridges subjected to a great
variety of electrical and mechanical conditions have been the subject of extensive
experimental (Zhang & Basaran 1996) and theoretical studies (either analytical or
numerical, e.g. Notz, Chen & Basaran 2001), when viscous forces are small or
negligible in the breakup dynamics, and when electrical relaxation times are negligible
compared to the characteristic hydrodynamic times of the process. Those detailed
and incisive studies may be relevant to drop formation from a liquid jet or column
breakup as long as the boundary conditions allow a qualitative comparison, although
it is hard to obtain general conclusions applicable for both cases. In particular, it is
worth noting that Basaran’s group’s studies on this subject (e.g. Zhang & Basaran
1996; Notz et al. 2001; Wilkes, Phillips & Basaran 1999; Yildirim & Basaran 2001)
allow an exhaustive and accurate analysis of the breakup, and in many cases of the
pinch-off extremely close to detachment (Chen, Notz & Basaran 2002). In our work,
however, we aim to study other processes and quantities of general interest such as:
(i) the splitting mechanism of charges between the main and satellite droplets, (ii) the
overall charge carried by those droplets, and (iii) their eventual electrohydrodynamic
stability (e.g. how close are they to the Rayleigh limit charge). The accurate but
expensive tools used in previous references are more than adequate for these tasks;
thus, under sufficiently general conditions, a one-dimensional model such as that
proposed in López-Herrera et al. (1999) yields excellent results (for a comparison
on the suitability of either a three-dimensional axisymmetric or a one-dimensional
model see for example Yildirim & Basaran 2001), which allows a detailed and quite
inexpensive exploration of wide parametrical ranges of interest (wavelength, viscosity,
surface tension and electrification levels).

The aim of the present note is twofold: (i) to present a large set of measurements
from highly controlled experiments using a relatively simple set-up, where the role of
both viscosity and electric forces relative to surface tension (i.e. the role of Ohnesorge
and electrical Weber number, or Taylor number) in charged capillary jet breakup is
investigated, and (ii) to compare these results with predictions from a simplified model
with a quasi one-dimensional approximation (Lee’s model) for the jet hydrodynamics.
Consistently with other previous works using this approximation to solve hydrody-
namic, axisymmetric, slender problems, where bulk forces are approximated very well,
we show the predictive capabilities of our model if that bulk force calculation is
combined with a sufficiently accurate calculation of the existing stresses on the surfaces
(both mechanical and electrical in our case).
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Figure 1. Geometrical configuration and electric potential values at the surfaces of interest.

2. Theoretical model
2.1. Geometrical configuration

When a capillary jet of a Newtonian, homogeneous liquid moves with velocity such
that capillary waves are convected downstream, its dynamical evolution can be de-
scribed with sufficient accuracy by a Lagrangian-type framework (Keller, Rubinow &
Tu 1973), i.e. by a model considering the temporal evolution of a portion of the jet
only. As is well-known, the errors incurred in the assumption of periodicity are
related to the ratio between the convective and the breakup times. In fact, the
differences between adjacent portions of the evolving real jet are due to convection,
whose characteristic associated time is tv ∼ L/U , where L and U are the perturbation
wavelength and the average liquid velocity in the intact jet sufficiently downstream of
the exit orifice. Furthermore, the dynamic evolution by capillary forces is associated
to the capillary time tc ∼ (ρA3/γ )1/2, where ρ, γ , and A are the liquid density, surface
tension, and the intact jet radius, respectively. Thus, non-periodicity involves errors
of the order of tc/tv ∼ (ρA3U 2/(γL2))1/2 � (ρAU 2/γ )1/2 = We1/2, since we will always
consider in this work A � L. Errors are small for Weber numbers We = ρAU 2/γ � 1.
When the Weber number exceeds a critical value, however, either the non-symmetric
perturbations grow faster than the axisymmetric ones or the influence of the
surrounding atmosphere becomes not negligible. Since our interest is focused on
the even, axisymmetric capillary jet breakup because of its importance in most
applications where a high-quality spray is needed (i.e. in electrospray for small
liquid flow rates, when the highest-quality aerosol is obtained), we restrict our study
to moderate We (smaller than about We ∼ 500 in our conditions, see Sterling &
Sleicher 1975). Additionally, though, we consider We values sufficiently larger than
unity (larger than about We ∼ 30) and, accordingly, we use a Lagrangian description
following the evolution of a jet portion only (see figure 1). Although this We range
may seem quite narrow, it nevertheless strictly coincides with the range of highest
droplet size homogeneity of interest in applications.

As can be observed in figure 1, the shape of the liquid column can be defined by
the implicit function,

G(r, t) = 0 or, explicitly, r = F (z, t), (2.1)

where r , z, and t are the usual radial, axial and temporal dimensional coordinates.
Figure 2 illustrates the accuracy of the Lagrangian description and the one-
dimensional model used in this note (and proposed in López-Herrera et al. 1999) by
comparison to a real breakup from one of the experiments performed in this work.
Figure 2(b) has been composed by selecting symmetrical frames obtained from the
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Figure 2. (a) Axisymmetric breakup of a weakly electrified jet from our experiments compared
to (b) the corresponding numerical simulation using our periodic augmented one-dimensional
model; (b) is generated by the superposition of 6 frames (numerically calculated) separated by
a time step equal to L/U .

temporal evolution computation in time intervals equal to one wavelength divided
by the convective velocity of the jet. In this composition, an inevitable small step-
discontinuity in the necking/swelling regions corresponding to the symmetrical frame
borders can be noticed, though resulting from a simple step-like conversion from
Lagrangian to spatial descriptions. These small steps can be smoothed out by an
appropriate small linear temporal correction in the spatial, axial direction along every
jet portion (however, since figure 2 is simply for illustrative purpose, this additional
refinement is nonsensical and may be misleading).

2.2. Forces on the jet and the one-dimensional model

In our experimental conditions, surface tension, density and temperature gradients are
considered absent. The mechanical interaction between the jet and the surrounding
ambient can be considered negligible, as can the acceleration along the jet resulting
from external forces such as gravity or tangential stresses of any nature. This last
assumption is valid as long as the increment of the kinetic energy along a wavelength
L is negligible compared to its local average value,

ρU�U/L

ρU 2/L
∼ �U

U
� 1 (2.2)

where U is the average axial liquid velocity. Since the increment of velocity �U due
to gravity g along a wavelength L is of order �U ∼

√
gL, the restriction (2.2) is

equivalent to considering that the Froude number, defined as Fr = gL/U 2, is much
smaller than one. Under these conditions, mass and momentum transport between
adjacent portions of the jet followed by the Lagrangian description are negligible.

Even under the simplifications described above, the resolution of the Navier–
Stokes equations with non-trivial boundary conditions at free surfaces becomes a
computationally expensive task. As we will show here, the introduction of a one-
dimensional approximation in the hydrodynamic model drastically reduces compu-
tational efforts with little accuracy loss. Many different models have been derived
with notable success (e.g. Lee 1974; Eggers & Dupont 1994; Garcı́a & Castellanos
1994 among others). In this work, we aim to show that the viscous Lee model, derived
by Eggers & Dupont (1994) and Garcı́a & Castellanos (1994) simultaneously, with
the addition of electric field effects (López-Herrera et al. 1999), is a tool particularly
well-suited to analyse the charged liquid jet dynamics. The equations of the model,
made non-dimensional with the intact jet radius A, the capillary time (ρA3/γ )1/2, the
liquid density ρ and the electric potential EnoA, (where Eno is the normal electric field
on the intact jet surface), are

(f 2)t + (f 2w)z = 0, (2.3)

f 2(wt + wwz) = −f 2(pce)z + 3C(f 2wz)z, (2.4)
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pce =
1(

1 + f 2
z

)3/2

(
1 + f 2

z

f
− fzz

)
− Γo

(
1 + f 2

z

)
(φr )

2, (2.5)

1

r
(rφr )r + φzz = 0, (2.6)

with boundary conditions

w(z = 0, t)= w(z = λ, t) = 0,

fz(z = 0, t)= fz(z = λ, t) = 0,

φz(r, z = 0, t)= φz(r, z = λ, t) = 0,

φ(r = (R∞/A), z, t) = 0,


 (2.7)

where as usual r , z, and t are the radial, axial and temporal non-dimensional
coordinates, respectively; w, f are the non-dimensional averaged axial velocity and
non-dimensional jet radius, respectively; pce is the capillary plus electrical pressure;
and λ= L/(2A) is half the non-dimensional wavelength. The relevant parameters of
the problem are the Ohnesorge number given by C = µ/(ργA)1/2 and the Taylor
number given by Γo = εoAE2

no/(2γ ), where εo and µ are the electric permittivity of
vacuum and liquid viscosity, respectively. In practice, we apply a certain potential
difference Vo between the intact jet and a concentric cylindrical electrode of radius
R∞ (see figure 1), and compute Eno as the relevant parameter that fixes the jet’s
electrification level and the surface charge density on the intact jet.

At this point it should be noted that an electrical boundary condition should be
added to those of (2.7) in order to close the problem formulation properly. A careful
discussion on electric charge conservation must be undertaken before the choice of
this lacking boundary condition.

2.3. The electrical problem

In this work we aim to describe charge evolution in the capillary jet breakup problem
when this charge is basically confined on the liquid surface. The jet charge is induced
by applying a potential difference between the liquid jet and the electrode which
surrounds the jet (figure 1). The real charged jet issues from a liquid source, where
the voltage is applied, and ends up in the breakup region as a jet locally (but not
globally) periodic for a constant imposed jet velocity.

We aim to compare this charged real jet breakup with a model which assumes
an infinitely long and spatially periodic capillary liquid column. The comparison
is consistent under the conditions that we will discuss in the following. First, the
boundary conditions and charge conservation requirements needed to close the
electrohydrodynamic spatially periodic problem (every wavelength portion evolves
identically and simultaneously) involve an indeterminacy which demands a careful
discussion for our theoretical periodic infinite domain. Consider a column with length
Lj of a liquid with an electrical conductivity K . This liquid column can be thought of
as a resistor with value Ω = Lj/(KπA2). Obviously, in the limit of an infinitely long jet,
its resistance would be infinite for any arbitrary finite value of the liquid conductivity,
unless we assume that the liquid is a perfect conductor (infinite conductivity), for
which the total liquid column resistance would be undetermined. Bearing in mind this
conceptual indeterminacy, we thus have the freedom to adopt two possible limiting
electrical conditions, discribed below when the proposed model is compared to a real
situation.
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2.3.1. Imposed potential

Under the assumption that the liquid is a perfect conductor, a limiting situation is
that the liquid column resistance is zero. In this case, its surface electric potential φo

is equal to that at both jet ends, at infinity, which can be maintained constant during
the time evolution of the jet. Therefore, the boundary condition

φ(r = f (z, t), t) = φo (2.8)

should be added to the set of conditions (2.7) for the completeness of the model.
In this case, since the liquid surface evolves in time and we keep the surrounding

electrode at a fixed position, the surface charge of every wavelength portion of the jet
must slightly change, according to the changing geometry and the imposed potential,
which would require a non-zero charge circulation along the jet. This would not
represent a problem for a truly perfect conductor at any time up to the final instant
when the last liquid molecules or atoms split apart at pinch-off.

2.3.2. Charge conservation

However, all real liquids exhibit a finite electrical conductivity. In this case, the
liquid column resistance would be infinite and thus, since no charge can be supplied
from infinity, the total surface charge of a wavelength portion of the jet must be
conserved. The liquid surface electric potential will therefore take an appropriate
value at every moment consistent with its instantaneous geometry and boundary
conditions, assuming that the surface portion of the jet must be equipotential at each
instant. Thus, the total charge on a wavelength portion of the jet must satisfy

qT =

∫ 2λ

o

enf
(
1 + f 2

z

)1/2
dz = 2λ. (2.9)

It should be stressed that this case is perfectly compatible with the assumption
of an almost perfect local conductor, from the point of view of the local evolution
of a single jet portion, if the characteristic charge relaxation time te ∼ ε/K is much
smaller than the characteristic time of fluid motion given by the capillary time tc,
which is a required condition to assume surface equipotentiality at each wavelength.
In fact, for our infinite, periodic model it is worth noting that independently of the
general requirement tc � te for a local quasi-perfect conductor assumption, charge
supply from the far ends of the jet involves arbitrarily large resistance values.

We are thus left with two possible limiting formulations for the electrical problem:
one can impose either (i) a constant surface electrical potential along the whole
breakup process, or (ii) the conservation of total surface charge on a wavelength
portion of the jet.

It is worth noting however that both formulations coincide when one connects both
ends of the jet at infinity and assumes that the surrounding concentric electrode is an
infinite torus which isolates the jet from the universe. This is a consistent corollary
since the potential at infinity can be changed in time at will (the charge conservation
condition is obviously a particular case of the imposed potential when it follows the
appropriate temporal law, see figure 3b).

2.3.3. Model closure and consistency

A real capillary jet issues from a liquid source and ends up in the breakup region, in
which a liquid particle will enjoy a residence time in the jet given by the growth time
of perturbations (proportional to tc). Thus, free charges are relaxed on the surface
along the jet if tc � te, which means that the inner electric field should vanish. This
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Figure 3. Evolution close to pinch-off of (a) total surface charge of a of the jet wavelength
portion, and (b) surface potential, using the charge conservation condition (—) and equi-
potentiality condition (- - -).

is compatible with the condition of equipotentiality (equation (2.8)), if the amount of
charge per unit time withdrawn by the detaching droplets coincides with the current
convected by the jet surface, since there is no need for a further supply of charge by
conduction driven by inner electric field. Paradoxically, this is also compatible with
the alternative charge conservation condition (equation (2.9)).

In reality, the paradox arises through an inappropriate extension to the limit of
logical reasoning based on small quantities. Our real jet is almost but not perfectly
periodic in space, our real jet is very long but not infinite, and our liquid is almost but
not perfectly conducting. Here we suggest a simple way to avoid what may turn into
a kind of over-subtle Byzantine discussion: to embrace a perfectly periodic, perfectly
conducting model and test both equipotential and charge conservation conditions. If
the differences found in the results are smaller than the errors incurred in assuming the
perfect periodicity or ideal conducting limits from a real jet, then a further discussion
on the issue of what is the appropriate closing condition is pointless when making
comparisons between model and experiments.

In figure 3, we show the evolution of both the total surface charge of a jet
wavelength portion and the surface potential using both surface charge conservation
and equipotentiality conditions for a typical case (λ= 5.15, C = 0.128 and Γo = 0.389).
Departures are only noticeable very close to pinch-off, and the maximum errors found
are of the order of less than 4% (obviously, the main reason for this small discrepancy
is the liquid domain slenderness). Since the errors incurred in assuming periodicity, of
the order of the inverse of the square root of the Weber number, are even larger than
those, then we can consistently close our model with either one or the other condition.

We have chosen charge conservation since it results in a slightly smaller error when
the numerical results are compared to experiments. Additionally, we should note that
charge conservation is the most mathematically sound condition for our model under
the considerations previously given for an infinite isolated jet both ends of which are
connected at infinity.

A detailed derivation of the equations and resolution methods can be found in
López-Herrera et al. (1999). Our aim here is to perform a careful experimental
assessment of the model already presented and its assumptions.
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Figure 4. The experimental set-up with a detail of the injector.

3. Experiments
Our experimental set-up is aimed at the precise measurement of both the charge

transported by the droplets and their size as functions of the physical properties of
the liquid and control parameters in our experiments.

Liquid contained in a reservoir is forced through a carefully made round-shaped
orifice with diameter of 400 µm to obtain a clean, laminar jet with a radius very close
to 200 µm. The liquid is forced with velocities ranging from 3 to 5 m s−1, for which
we obtain a plug-flow velocity within a few millimetres from the exit orifice in our
experimental conditions. We impose a continuous sinusoidal perturbation on the jet
by forcing the plate containing the exit orifice with a piezoelectric actuator (a Pz-27
tube from FERROPERM) driven by a function generator (PM-5135 Philips function
generator). The actuator is located sufficiently close to the orifice (see figure 4)
to overcome any surrounding noise. The mechanically perturbed jet then breaks
into droplets following a highly reproducible, controlled process. Using classical
stroboscopic techniques, where a light source is pulsed at the same frequency as the
jet perturbation, the jet breakup can be easily monitored in its greatest detail (see for
example figure 5) by multiple imaging superposition, where many hundreds of single
light strokes per image are recorded. The light source is a high-luminosity LED driven
by an electronic circuit which transforms a TTL signal from the function generator
into a train of pulses of 700 ns width and the same frequency as the excitation.
Also, the electronic circuit can produce a controllable phase shift with respect to
the excitation, which allows a detailed pseudo-slow-motion ‘video-edition’-like study
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Figure 5. Image of the last stages of the breakup of an uncharged highly viscous jet (liquid:
propyleneglycol) as obtained with our stroboscopic set-up and a conventional CCD camera
(25 f.p.s., not a high-speed camera).

(forwards or backwards) of the jet breakup when the phase shift is slowly changed
with time. The images, magnified with a microscope, are stored in a PC.

At the location downstream of the exit orifice where the jet breakup phenomena are
recorded, the liquid velocity (typically 4 m s−1) is large compared to that due to gravity
alone. In other words, the Froude number gL/U 2 in our experiments is of the order
of 10−4, for which the acceleration due to gravity can be neglected. Consequently, the
jet can be considered virtually cylindrical before the breakup region. The dynamical
Weber number is typically We ∼ 100. Thus, convective velocities are about We1/2 ∼ 10
larger than the capillary liquid jet breakup velocities, which means that our model
periodicity assumptions are correct within errors of the order of We1/2 � 1.

For the purposes of a quantitative comparison with our theoretical model, in this
work we wish to electrify the jet in such a way that the tangential electric field is zero.
Therefore, in order to minimize the appearance of any possible voltage drop along
the jet, we place two parallel metallic plates of 40 mm width and 155 mm long in the
direction of the jet’s axis at a distance of 20 mm from the jet (see figure 4), and apply
a high voltage difference (high voltage source Bertran model 205B-10R) between the
exit orifice and the parallel plates. The jet flow is equidistant from the parallel plates.
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Liquid γ (Nm−1) ρ (Kgm−3) µ (c.p.s.)

Low-viscosity mixture (L) 0.0451 1100 8
Medium-viscosity mixture (M) 0.052 1116 14
High-viscosity mixture (H) 0.0461 1124 28

Table 1. Relevant physical constants of the liquids employed.

In addition, in this work we are interested in phenomena where electrical relaxation
effects are negligible, which demands small electric times te ∼ εK−1 compared to the
capillary ones tc ∼ (ρA3γ −1)1/2. The liquid conductivities used are of the order of K ∼
10−3 Sm−1, whereas the relative permittivities β = ε/εo are approximately equal to
60. Therefore, in the present experiments the ratio te/tc is of order of 10−4 and the
jet can be considered equipotential. Consequently, the liquid jet can be considered
virtually free of any tangential electric stress, the drop voltage along the jet can be
assumed negligible and, finally, the liquid conductivity and permittivity disappear as
relevant physical properties of the problem.

3.1. Measurement of the physical properties and the jet velocity

Three mixtures of water and glycerin have been used in this study to cover a significant
range of viscosities. Surface tension have been measured with a digital tensiometer
Krüss K10T, the viscosity with a Brookfield Digital viscosimeter model DV-E, and
the density with a precision balance (Scout Ohaus), in a controlled temperature
environment (22 ◦C). Values are summarized in table 1.

In order to achieve a good control of the liquid viscosity, this parameter was
measured before and after an experimental series is recorded. On the other hand,
it is worth noting that our liquid surface tension measurements are smaller than
those expected using mixtures of pure liquids (Lide 1990). This may be due to
the use of filtered tap water, but this is of a minor importance for our purposes
since we are interested in using liquids with accurately measured physical properties
(density, viscosity, surface tension, electrical conductivity and permittivity) under
controlled temperature conditions, instead of liquids with perfectly controlled chemical
composition (purity, concentration, etc.).

The wavelength is directly measured from the acquired images. In practice, an
average measurement of the wavelength L is made along the jet to maximize
experimental accuracy. The liquid velocity U of the intact jet, or the average velocity
of a jet portion with length L, can be simply calculated from the frequency of drop
formation F (equal to the excitation frequency in our global periodic conditions) as

U = LF, (3.1)

which is valid under the hypothesis that the drop does not undergo axial accelerations.

3.2. Droplets and jet radius measurement

The jet and droplet shapes are measured by image processing with a commercial
program (Corel Photo Paint 9.0) which transforms the 256 grey image to a black and
white image for easier interface detection and shape digitization (see figure 6). Under
the working conditions, the grey scale and grey border level for profile detection can
be adjusted using a calibrated glass filament of known diameter. We have used a
resolution of 5 microns per pixel in this experimental work.
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Figure 6. Digital shape processing is optimized using the more critical, smaller droplet
image. Image resolution is 5 microns per pixel.

The intact jet radius measurements give 198 µm, 206 µm and 210 µm for the
liquids with ‘low’ (50/50 water volume/glycerol volume), ‘medium’ (40/60 water
volume/glycerol volume) and ‘high’ (30/70 water volume/glycerol volume) viscosities
employed, respectively, independently of the liquid flow rates and the axial point
observed in our experimental range. These small variations from liquid to liquid may
be due to wetting differences at the orifice edge.

The satellite droplet radius is calculated from a sphere of volume equivalent to that
obtained by numerical integration of the acquired droplet image profile. In order to
minimize the errors, each satellite droplet is photographed at several different axial
positions and an average volume is calculated. Thus, the main droplet radius is easily
and accurately calculated from the experimental parameters (measured jet wavelength
and intact jet diameter) and the calculated satellite volume.

3.3. Calculation of the surface charge density; determination of the Taylor number

The Taylor number Γo, or the ratio of electric to capillary forces,

Γo =
εoAE2

no

2γ
, (3.2)

provides information about the ‘jet electrification level’. This number must be
determined from an accurate calculation of the surface charge on the jet, or the
normal electric field at the intact jet surface Eno. The use of a cylindrical conducting
electrode concentric to the jet prevents jet visualization, so we have used parallel plates
to simulate the same final electrostatic effect on the jet. In order to assess whether
the experimental electrode configuration can accurately approximate the concentric
electrode configuration, we have used the boundary elements method (Brebbia &
Dominguez 1989) to calculate the electric field on the jet surface for a given potential
difference between the jet surface and the parallel plates. Note that since the width
of the electrodes and the distance between them is much larger than the jet radius,
the resulting electric field distribution on the jet surface is almost axisymmetric
(see figure 7), with deviations smaller than 0.07% (7 × 10−4), which justifies the use
of our experimental set-up to simulate axisymmetric electrifying conditions on the
jet. Thus, the average normal electric field on the surface due to a difference of
1V between the jet and electrification electrodes gives Eno(1V) = 1.232 × 103 Vm−1,
1.178 × 103 Vm−1 and 1.161 × 103 Vm−1 for the intact jet radius of 198 µm, 206 µm
and 210 µm, respectively. Therefore, the Taylor number in a particular experiment
can be calculated by (3.2), where Eno =En(1V) × Vo/1V is the normal electric field at
the intact jet surface and Vo is the voltage applied to the jet in volts (typically several
kilovolts).
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Figure 7. A realistic distribution of the normal electric field (in Vmm−1) on the intact jet
surface in our experimental set up as calculated using a two-dimensional boundary elements
method in the slice domain shown in the insert. Note the small deviations (smaller than a 0.07%)
from a constant value corresponding to an axisymmetric configuration.

Figure 8. Discrimination of the charge transported by the satellite and main droplets.

3.4. Droplet charge measurement

The charge of each droplet can be calculated from the electric current transported
and its volume. Two picoammeters are independently connected to the electrification
electrodes and to a collector electrode located downstream (see figure 8), respectively.
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Figure 9. Instants of capillary liquid jet final breakup for several values of the electrification
level. C = 0.078 in all cases. (a) Γo = 0, (b) Γo = 0.234, (c) Γo =0.651, (d) Γo = 0.938. Note that
these pictures do not correspond to consecutive steps of the same breakup event, but they
correspond to the final instants of the jet breakup for different experimental conditions.

Thus, the electric current transported by the main and the satellite droplets can
be independently measured since a natural segregation between the main and satellite
droplets takes place along their trajectories: due to their smaller mass, the satellite
droplets impinge on the electrification electrodes whereas the main droplets, whose
trajectories are hardly affected, eventually impinge on the collector electrode. In order
to assess how well our experimental set-up can discriminate between the charge on
main and satellite droplets, based on the satellite segregation effect, we moved the
plates along the jet axis in the upstream direction until the electric current reading
of the picoammeter suddenly drops by some orders of magnitude, exactly when the
observed satellites trajectories miss the plate where they where previously collected. In
another assessment of the system, we intentionally intersected the satellite trajectories
before they hit the collecting plate, and the same drop in the electric current reading
as before is observed. The main or satellite droplet charge Q experimentally measured
is then simply given by Q = I/F , where I is the corresponding electric current (main
or satellite) and F is the excitation frequency.

In the model we compute the satellite and main droplet volumes and charges by
calculating the integrals (2.9) and the volumes in domains (0, zfmin

) and (zfmin
, λ)

respectively, where zfmin
is the axial coordinate where the neck radius is minimum.

It is worth of noting that once the velocity of the jet U is fixed, the total current
measured by both picoammeters connected to either the parallel plates or the
downstream collecting metallic funnel is independent of the excitation frequency
(in other words, that qT ∼ λ, in accordance with charge conservation condition (2.9)).

4. Experimental results
Before proceeding further we would like to give an illustration of the effects

produced by the jet electrification in our experiments. Figure 9 shows how the final
instants close to pinch-off are affected for increasing electrification levels. Note that
the different pictures do not correspond to the same breakup event (these are selected
pictures of the last instants before pinch-off of a charged jet breakup from different
experiments and for different electrification levels). Consistently with prior results
from Cloupeau & Prunet-Foch (1989) (their figure 14, p. 152) for electrospraying,
the effect of the electrification level on the main drop–satellite splitting at breakup is
hardly noticeable or mild up to a limiting Γo value, which depends slightly on the
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viscous parameter C. This point represents a more or less abrupt transition to an
asymmetric breakup, where kink instabilities abruptly grow and Coulombic fissions
take place (see in figure 9d). One of the aims of this note is to provide precise
experimental and numerical data which show that, in the range of electrification
levels and Weber numbers for which the breakup is axisymmetric, the nonlinear
breakup process does not undergo other major significant alterations than a change
in the breakup wavelength and frequency associated with the moderate change in the
effective surface tension due to the presence of the electric field. Additionally, we will
show that the resulting charge of the satellite is closer to the Rayleigh limit than that
of the main droplet in all experimental conditions.

In this note, the experimental emphasis is on the size and charge of droplets. Other
quantities of interest, however, such as the effect of the electrification level on the
breakup time, can be observed only qualitatively given their dependence on the amp-
litude of the initial perturbation. Since the excitation is indirectly imposed, the
transfer function between the excitation voltage on the piezoelectric tube and the
initial perturbation undergone by jet cannot be accurately calculated. This kind of
measurement can only be carried out by considering a direct transfer function, as is
the case of Barbet (1997).

Two plots are given for each experimental condition: the non-dimensional droplet
radius rg/A versus the wavenumber k, and the non-dimensional charge transported
by the droplets Q/QR , also versus k, where QR is the Rayleigh limit charge given by

QR = 8π
(
εoγ r3

g

)1/2
. (4.1)

The influence of the liquid viscosity on the droplet size can be observed in figure 10,
for a very similar value of the Taylor number Γo (approximately 0.1 in the first
column), the Ohnesorge number C varying from 0.078 (bottom) to 0.271 (top).
Consistently with all previous results in the field, the satellite radius decreases with
increasing liquid viscosity. The radius reduction for k = 0.7 is roughly of the order
of 30% from C = 0.078 to C = 0.271. As the viscosity increases, the discrepancies
between experiments and the one dimensional model decrease since the flat velocity
profile becomes a more realistic assumption.

The effect of Taylor number on the satellite radius is hardly noticeable (see
figure 10), whereas an increase of the Ohnesorge number leads to a mild decrease
of the satellite radius. Thus, although the liquid viscosity and electrical conductivity
affect the satellite size (see figure 10), consistently with the published literature the
excitation frequency is in reality the most effective way to gain a full control of the
satellite droplet.

The non-dimensional charge of the main droplets is almost invariant with the
wavelength. The agreement between experiment and theory is remarkably good
(see figure 11). On the other hand, the non-dimensional satellite charge presents a
minimum value for an intermediate viscosity as can be observed in plots (e) and (h)
of figure 11, as a consequence of the competing effects of size reduction by viscosity
and surface charge distribution on breakup: for the larger viscosity value (top row),
the non-dimensional satellite charge is larger since QR is smaller corresponding to
the size reduction (see (4.1)), while for the smaller viscosity the satellite size becomes
larger and eventually acquires more charge during the breakup process.

The disagreement between theory and experiment is more noticeable the larger
the Taylor number (last column of figures 10 and 11). This disagreement could be
explained by the Coulombic explosions that may occur in the ligament appearing
in the last stages of the breakup (see figure 12). These phenomena are more likely
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Figure 10. Non-dimensional values of the droplet radius rg/A, being A the intact jet radius,
versus the wavenumber k for increasing values of the Ohnesorge number C (bottom to top)
and the Taylor number Γo (from left to right). The exact values of the Taylor number can
be calculated from equation (3.2) using the jet voltage Vo. Lines correspond to numerical
calculations (continuous to main droplets and dashed to satellites) whereas open symbols
correspond to experimental data. In each plot, we have used different symbols for different
experimental series under the same experimental conditions, for identification of the different
experiments but these have no relevance for the comparison with theoretical predictions.

to appear the thinner the ligament, or, in other words, the smaller the viscosity
and wavelength. Therefore, although Taylor number is relatively large in those cases
(roughly Γo ∼ 0.4), the agreement improves for the larger viscosity values (see plots
(c) and (f ) in figures 10 and 11).

4.1. Some remarks and implications in electrospraying

Whether this experimental model would resemble a real electrospray jet is a matter
of discussion in terms of the relevant non-dimensional numbers which characterize
the particular experimental conditions for an electrospray-emitted liquid jet. Clearly,
the recent published literature points to a non-negligible voltage drop along any real
electrosprayed jet (see Gañán-Calvo 1997, 1999; Gamero-Castaño & Hruby 2002),
responsible of a tangential electric stress which thins the jet in the downstream
direction. Nevertheless, the tangential-to-normal electric fields ratio on the jet surface
is small (see Gañán-Calvo 1997, 1999), which was what led us to use the present model
as a first approach to assess some features that may be observed in an electrospray.
However, as can be observed from table 2, the errors in our model calculations
underestimate significantly the experimental charge-to-mass ratio of Gamero-Castaño
& Hruby (2002). Consequently, in those situations where the tangential electric field
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Figure 11. Non-dimensional values of the droplet charge Q/QR , being QR the Rayleigh limit
charge, versus the wavenumber k for increasing values of the Ohnesorge number C (bottom
to top) and the Taylor number Γo (from left to right). The exact values of the Taylor number
can be calculated from equation (3.2) using the jet voltage Vo. Lines correspond to numerical
calculations (continuous to main droplets and dashed to satellites) whereas open symbols
correspond to experimental data. In each plot, we have used different symbols for different
experimental series under the same experimental conditions, for identification of the different
experiments but these have no relevance for comparison with theoretical predictions. In plot
(c), the charge of the satellite droplets exceeds the Rayleigh limit value.

Solution Q (m3 s−1) I (nA) Rb (µm) q/m (CK g−1) q/m (model) error (%)

TBP5 4,00E-11 41 0,57 0,9 0,654 27,3
TBP5 5,26E-11 48 0,65 0,78 0,572 26,7
TBP5 7,83E-11 57 0,81 0,64 0,493 22,9
TBP5 9,56E-11 62 0,88 0,57 0,459 19,4

Table 2. Experimental results of droplet charge-to-mass ratio (Gamero-Castaño &
Hruby 2002) and predicted values from the present model. Q is the liquid flow rate, Rb is the jet
radius at the breakup point, and q/m is the charge-to-mass ratio.

scales as that corresponding to the presence of the electrified conical meniscus (Taylor’s
field, see Gañán-Calvo 1997, 1999), our model would result in an unrealistic prediction
of the jet breakup process.

When the issuing jet is sufficiently long compared to the general dimensions of
the capillary feeding needle tip and the conical meniscus, the jet has a drastically
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Figure 12. Pictures of the satellite disruption as a consequence of overcoming the Rayleigh
limit charge, in the experimental conditions under which the theoretical model predicts this
situation. (a): The satellite droplet in its relative position with the main droplet. (b) Four
different stages of the satellite disruption and liquid ejection, where situation 4 corresponds to
the satellite in (a). The blur in the pictures is due to the not exact periodicity of Coulombic
emissions and to the large number of images superposed in every frame that we show in this
figure. Note that the strobe frequency delivers a lot of very short light pulses every time the
CCD shutter is open.

decreased tangential electric field in the breakup region. In these conditions, our
model would be an appropriate predictive tool.

It is worth noting that the satellite charge passes the Rayleigh limit well before the
main droplet, for quite moderate values of the Taylor number when the Ohnesorge
number becomes sufficiently large (in our case, for Γo larger than about 0.4 and C

larger than about 0.25). This means that the chance of observing Coulombic rupture
of satellites becomes greater for rather moderate jet electrification levels if the liquid
is sufficiently viscous or electrically conducting (see figure 11). Even though the scales
are obviously not comparable, we suggest that these results are compatible with some
recent experimental findings whose authors have hypothesized the role of satellite
droplets in the appearance of single ions and ion clusters in electrospraying, in cases
where Coulombic explosions were not expected for the main droplets. This is not to
say that we observed ion/ion cluster emissions in our experiments. In fact, our jet
sizes are orders of magnitude larger that those typical in an electrospray. However, we
want to repeat here the result (numerical and experimental) that the satellite reaches
the Rayleigh limit before the main droplet for an increasing electrification level. Since
in addition the satellite is smaller and its evaporation velocity is significantly larger
than that of the main droplet, in most cases the satellite will be prone to experience
Coulomb explosions or a chain of explosions which would eventually yield ion/ion
cluster emissions for rather moderate electrification levels, in cases where the role of
the main droplets in these events is null.

In cases where our model could be applicable to actual electrosprays, it may
allow to quantify the maximum electrification level for which Coulombic ruptures
are absent as a function of the Ohnesorge number, which was out of the reach
of prior linear analyses (e.g. Saville 1971b). Above this electrification level, one can
expect a decrease of the quality of the spray (i.e. a less monodisperse aerosol) due to
Coulombic explosions (Gomez & Tang 1994; Gamero-Castaño 1998). Since the Taylor
number is significantly proportional to the jet radius in steady cone-jet electrospraying
(Gañán-Calvo 1999), the flow rate range for which one has a fairly monodisperse
aerosol is quite narrow in reality, consistent with the observations of Fernández de la
Mora et al. (1990) and Chen, Pui & Kaufman (1995) and the conclusions that can
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Figure 13. Last stages of the time evolution of the interface position (with a detail of
the necking region) and normal electric field close to pinch-off. Recorded times t =
12.7,12.80,12.81,12.82,12.83,12.833. λ =5.15,C = 0.128 and Γo = 0.389.

be drawn from our model. Moreover, when the liquid viscosity is sufficiently large,
the even, axisymmetric breakup regime may be intrinsically absent from the stable
cone-jet electrospraying conditions, as shown by Hohman et al. (2001a , b).

4.2. Some remarks on the accuracy of the electric field calculation in the
pinch-off region

We have learned that the last stages of the breakup are essential for determining
the final values of the droplet charge. Consequently, the accuracy of the calculation
of the surface charge density distribution in the pinch-off region may be crucial to
achieving a good agreement between theory and experiments. As can be observed
in figure 13, the electric field soars sharply at the point of minimum radius as the
collapse of the interface approaches. In order to see in more detail how the different
stresses on the jet surface evolve close to pinch-off at the necking region, figure 14
shows the ratio of the electrostatic pressure to the surface tension stress. We can
observe in this figure that there is a clear lack of mechanical balance in favour of
surface tension (since electric stress remains a mere 1% of the surface tension stress as
1/fmin soars), which precipitates the final neck pinching. Even though the electric field
peak at the neck has a clear resemblance with the electrospraying phenomenon at
the steady neck joining the cone and the jet, which in fact survives collapse by means
of a local increase of the surface charge as a consequence of its quasi-equipotential
nature (Gañán-Calvo 1997, 1999; Hartman et al. 2000), the final jet droplet pinch-off
mechanism described here differs completely from the liquid ligament emission in
electrospraying since electrostatic stresses are of paramount importance in this latter
case at the cone-jet necking: while the electrospray cone-jet points in the direction of
a strong potential gradient (the external electric field), our main and satellite liquid
masses joined by a collapsing neck have the same potential, and as such the liquid
contained in the necking region would not feel the influence of a strong axial field
characteristic of electrospray. Thus, it will collapse almost exclusively through surface
tension forces.
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Figure 14. Evolution of the ratio of electric stresses to the surface tension stresses on the jet
surface at the necking point (fmin), as a function of 1/fmin; λ =5.15,C = 0.128 and Γo = 0.389.

In addition, the pinch-off times, which scale as (ρf 3
min/γ )1/2, become arbitrarily

small compared to the charge relaxation times ε/K close to collapse, which eventually
invalidates any electrostatic process hypothesis at the pinching region. However, it
can be observed in figure 15 that the dependence of the non-dimensional satellite
charge before pinch-off on the minimum radius fmin becomes negligible for fmin below
1% of the intact jet radius in all our conditions, which makes irrelevant any further
calculation refinement ahead of these very final stages. Here, it is necessary to point
out that we have used a finite Fourier series formulation of the boundary element
methods (Green’s integral formulation) instead of the classical discretization of the
contour domain into finite elements, since it appeared to be the best suited and
smoothest scheme to reach as close as possible to the breakup point. Thus, the shapes
plotted in figure 13 do no allow one to determine whether the resolution limit has been
reached. We have performed a sensitivity analysis of the results (mainly the normal
electric field in the neck vicinity, the resulting droplets volumes, and their eventual
charges) on the number of terms of the series, when a ‘minimum’ radius (that we fix
about 0.01) is reached. In other words, we fix our goal as reaching a certain minimum
neck radius below which there is no change in the droplet volumes and charges under
the most accurate conditions. Obviously, the smaller the radius goal, the larger the
number of Fourier terms, and it is worth noting that the number of terms soars
exponentially when we decrease the radius below 0.005, to the point that the code
becomes computationally very inefficient. In fact, for a radius smaller than this goal
(0.005), a better suited scheme should be developed. In conclusion, though, we must
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Figure 15. The non-dimensional satellite charge as a function of the minimum radius of the
interface fmin; C = 0.128 and Γo = 0.219. Note that the charge becomes almost independent
of the radius below fmin ∼ 0.01 times the value of the intact radius.

emphasize again that the main and satellite droplet volumes and charges remain
intact when the neck radius becomes smaller than about 0.01 (figure 15). Since these
results (droplet volumes and charges) are the main targets of our study, our numerical
scheme fulfils its objective.

5. Conclusions
In this note we present a large collection of experimental measurements of both

droplet size and charge generated after charged liquid jet axisymmetric breakup.
Both the main and satellite droplets are measured, and their size and charge are
compared to the numerical results obtained from nonlinear simulations using an
augmented one-dimensional model. The agreement between theoretical predictions
and experiments is, in general, remarkably good except for the lower liquid viscosities
and larger applied voltages. In these cases, the lack of agreement could be explained
by the appearance of Coulombic ruptures and lateral liquid emissions from the thin
ligament formed in the last stages of the breakup. In addition, the assumptions of a
flat velocity profile and the domain slenderness in Lee’s model become unrealistic for
the lower viscosity and the shorter imposed breakup wavelength in our experiments.
In any case, however, our results show that satellite droplets are particularly prone
to undergoing Coulombic disruptions even in the case of very moderate jet surface
charge values (or jet electrification levels) when the Ohnesorge number is higher than a
certain value. We suggest that this finding could be, if not directly applicable, at least
consistent with other recent findings that have pointed out the possible role of
satellite droplets in the appearance of single ions and ions clusters in electrospraying,
in situations where Coulombic explosions of the main droplets were not expected (e.g.
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Gamero-Castaño 1998). However, the applicability of our model to real electrosprays
would be viable only in cases where the jet length is sufficiently large compared to
the electrified meniscus from which it issues or in other situations with a drastically
reduced tangential electric field: for example, when the jet is forced to cross the
electrode plate through an orifice (Gañan-Calvo 1998), and a voltage drop is applied
between the liquid feeding tube and the orifice plate.
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